Shot blasting machines are widely used for surface preparation and finishing structural steel components for a variety of industries. In addition to specifically designing machines able to accommodate large, heavy, and bulky structural steel workpieces, Rosler Metal Finishing also expertly designs the turbines within these machines for precise results.
Blast
turbines accelerate and throw the blast media against the workpieces. They are
for shot blast machines what the engines are for cars and trucks. Both
determine the performance of the respective machine or vehicle including the
speed of a sports car and the torque of a heavy-duty truck.
Like vehicle engines, the specifications of different turbines directly influence the performance of a shot blasting operation. This installment of our Structural Steel FAQ series will answer How do different blast turbines affect the quality of shot blasting results?
Blast Patterns
Blast
patterns are the size and shape of the area where blast media strikes a
workpiece as it progresses through the machine. The area of impact is also
referred to as a âhot spot.â Long blast patterns are required to accommodate the
large size of structural workpieces.
Concentrated blast patterns are often used in shot peening, but would not offer enough finishing coverage for structural steel applications. Similarly, the normal blast patterns used for casting and forgings are also not effective for structural steel.
Throwing Speeds
Because
of the large workpiece envelope, the travel distance of the blast media between
the turbine and workpieces can be very long. To generate the impact energy
required for blast cleaning of such large components, the acceleration or
throwing speed of the media by the turbine must be considerably higher than in
smaller shot blast machines.
Turbines
with curved throwing blades generate a substantially higher media acceleration than
straight-bladed blast wheels and are the preferred blast turbines for large
structural steel components.
Gamma 400 G Turbine
Roslerâs
GammaÂź G is an innovative turbine with curved throwing blades. Compared
to straight-bladed, conventional blast wheels, a GammaÂź turbine of
the same size and running at the same speed, generate up to 25 percent higher
throwing speeds of the blast media. This improves the overall blast performance
by 15-20 percent.
Other benefits
offered by the GammaÂź G turbine include:
- Use of both blade sides, reducing maintenance costs and increasing equipment uptimes.
- Significantly lower energy consumption compared to conventional blast wheels.
- Quick blast pattern adjustment by changing the impeller position.
Turbine Placement
The
correct placement of the turbines around the blast chamber is another critical consideration
affecting the performance of blast machines for structural steel components.
Their
placement must ensure that complete blast media coverage is achieved on the
workpieces without any âdeadâ spots where the media does not reach. Please note: In the case of large, complex
weldments, the prevention of dead spots may not be possible. In such cases,
manual touch-up is required. We will address this topic in Part 10 of this
series.
The
turbines opposite from each other must be somewhat offset so that they are not
blasting into each other. This would not only produce poor blast cleaning
results but would also cause extensive, premature wear.
The turbine placement can be determined by computer simulation and allows for the evaluation of all faces of exposure.
The Rosler Way
Whatever your structural steel media needs are, you can count on Rosler Metal Finishing to help you find a better way and the best machine. Contact ustoday to discuss your unique challenges.
The complete Structural Steel Series includes:
- Part 1 â Why Surface Preparation is Necessary.
- Part 2 â Methods of Surface Preparation.
- Part 3 â Evaluating Rust and Mill Scale Pre- and Post-Blast.
- Part 4 â Evaluating the Presence of Dust.
- Part 5 â Assessing Surface Profile.
- Part 6 â Blast Mediaâs Influence on Surface Profile.
- Part 7 â Comparing Commonly Used Blast Machines.
- Part 8 â Are All Turbines Created Equal?
- Part 9 â Removing Residual Blast Media and Dust.
- Part 10 â Blast Rooms for Touch-Ups.
- Part 11 â Preservation Lines.
- Part 12 â Material Handling Options.
Sign up for enews alerts to be notified of all Rosler blog posts!